vector space of dimension n - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

vector space of dimension n - перевод на Английский

NUMBER OF VECTORS IN ANY BASIS OF THE VECTOR SPACE
Linear algebra/Dimension of a vector space; Dimension of a vector space; Dimension (linear algebra); Vector space dimension; Finite-dimensional; Hamel dimension; Finite-dimensional vector space; Algebraic dimension; Infinite-dimensional space; Finite dimensional; Linear Algebra/Dimension of a Vector Space; Infinite-dimensional vector space; Infinite-dimensional; Vector dimension; Infinite-dimensional vectors; Dimension (Vector space); Dimension (Vector Space); Infinite dimensional space; Infinite Dimensional vectors; Finite-dimension
Найдено результатов: 54021
vector space of dimension n      
n-мерное векторное пространство
finite-dimensional         

общая лексика

конечно-мерный

конечномерный

infinite-dimensional         

математика

бесконечномерный

finite dimensional         

математика

конечномерный

infinite-dimensional space         

общая лексика

бесконечномерное пространство

Euclidean space         
GENERALIZATION OF EUCLIDEAN GEOMETRY TO HIGHER-DIMENSIONAL VECTOR SPACES
Euclidean norm; Euclidian space; Euclidean spaces; N-dimensional Euclidean space; Euclidean vector space; Euclidean space as a manifold; Euclidean Space; Euclidean manifold; Euclidean length; Finite dimensional Euclidean space; Finite-dimensional real vector space; Euclidean n-space
евклидово пространство; пространство Евклида
Euclidean space         
GENERALIZATION OF EUCLIDEAN GEOMETRY TO HIGHER-DIMENSIONAL VECTOR SPACES
Euclidean norm; Euclidian space; Euclidean spaces; N-dimensional Euclidean space; Euclidean vector space; Euclidean space as a manifold; Euclidean Space; Euclidean manifold; Euclidean length; Finite dimensional Euclidean space; Finite-dimensional real vector space; Euclidean n-space

математика

евклидово пространство

complex vector         
  • Addition of functions: the sum of the sine and the exponential function is <math>\sin+\exp:\R\to\R</math> with <math>(\sin+\exp)(x)=\sin(x)+\exp(x)</math>.
  • planes]] (green and yellow).
  • 2'''w'''}} are shown.
  • '''w'''}} (red) is shown.
  • ''y''}} yields an isomorphism of vector spaces.
  • 200px
THE BASIC ALGEBRAIC STRUCTURE OF LINEAR ALGEBRA; A MODULE OVER A FIELD, SUCH THAT ITS ELEMENTS CAN BE ADDED TOGETHER OR SCALED BY ELEMENTS OF THE FIELD
VectorSpaces; Vector Space; Linear space; Vector theory; Vector spaces; Vectorspace; Real vector space; Complex vector space; Coordinate space; Coordinate vector space; Coordinate linear space; Linear coordinate space; Abstract vector space; Complex Vector Spaces; Field of scalars; Complex vector; Real vector; Vectors and Scalars; Vectorial space; Vectorial Space; Linear vector space; Space-vector; Space vector; General vector space; Several variables; Vector line; Vector plane; Vector hyperplane; Applications of vector spaces; Vector space over a field

математика

комплексный вектор

field of scalars         
  • Addition of functions: the sum of the sine and the exponential function is <math>\sin+\exp:\R\to\R</math> with <math>(\sin+\exp)(x)=\sin(x)+\exp(x)</math>.
  • planes]] (green and yellow).
  • 2'''w'''}} are shown.
  • '''w'''}} (red) is shown.
  • ''y''}} yields an isomorphism of vector spaces.
  • 200px
THE BASIC ALGEBRAIC STRUCTURE OF LINEAR ALGEBRA; A MODULE OVER A FIELD, SUCH THAT ITS ELEMENTS CAN BE ADDED TOGETHER OR SCALED BY ELEMENTS OF THE FIELD
VectorSpaces; Vector Space; Linear space; Vector theory; Vector spaces; Vectorspace; Real vector space; Complex vector space; Coordinate space; Coordinate vector space; Coordinate linear space; Linear coordinate space; Abstract vector space; Complex Vector Spaces; Field of scalars; Complex vector; Real vector; Vectors and Scalars; Vectorial space; Vectorial Space; Linear vector space; Space-vector; Space vector; General vector space; Several variables; Vector line; Vector plane; Vector hyperplane; Applications of vector spaces; Vector space over a field

математика

поле скалярных величин

linear space         
  • Addition of functions: the sum of the sine and the exponential function is <math>\sin+\exp:\R\to\R</math> with <math>(\sin+\exp)(x)=\sin(x)+\exp(x)</math>.
  • planes]] (green and yellow).
  • 2'''w'''}} are shown.
  • '''w'''}} (red) is shown.
  • ''y''}} yields an isomorphism of vector spaces.
  • 200px
THE BASIC ALGEBRAIC STRUCTURE OF LINEAR ALGEBRA; A MODULE OVER A FIELD, SUCH THAT ITS ELEMENTS CAN BE ADDED TOGETHER OR SCALED BY ELEMENTS OF THE FIELD
VectorSpaces; Vector Space; Linear space; Vector theory; Vector spaces; Vectorspace; Real vector space; Complex vector space; Coordinate space; Coordinate vector space; Coordinate linear space; Linear coordinate space; Abstract vector space; Complex Vector Spaces; Field of scalars; Complex vector; Real vector; Vectors and Scalars; Vectorial space; Vectorial Space; Linear vector space; Space-vector; Space vector; General vector space; Several variables; Vector line; Vector plane; Vector hyperplane; Applications of vector spaces; Vector space over a field

математика

линейное пространство

Определение

ДИМЕТИЛФОРМАМИД
(CH3)2NCHO, бесцветная жидкость, tкип 153 °С. Растворитель в производстве синтетических волокон, красителей, при выделении ацетилена из газовых смесей.

Википедия

Dimension (vector space)

In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.

For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V {\displaystyle V} is finite-dimensional if the dimension of V {\displaystyle V} is finite, and infinite-dimensional if its dimension is infinite.

The dimension of the vector space V {\displaystyle V} over the field F {\displaystyle F} can be written as dim F ( V ) {\displaystyle \dim _{F}(V)} or as [ V : F ] , {\displaystyle [V:F],} read "dimension of V {\displaystyle V} over F {\displaystyle F} ". When F {\displaystyle F} can be inferred from context, dim ( V ) {\displaystyle \dim(V)} is typically written.

Как переводится vector space of dimension n на Русский язык